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Abstract

We present a novel spam detection technique
that relies on neither content nor reputa-
tion analysis. This work investigates the dis-
criminatory power of email transport-layer
characteristics, i.e. the TCP packet stream.
From a corpus of messages and correspond-
ing packets, we extract per-email TCP fea-
tures. While legitimate mail flows are well-
behaved, we observe small congestion win-
dows, frequent retransmissions, loss and large
latencies in spam traffic. To learn and exploit
these differences, we build “SpamFlow.” Us-
ing machine learning feature selection, Spam-
Flow identifies the most selective flow prop-
erties, thereby adapting to different networks
and users. In addition to greater than 90%
classification accuracy, SpamFlow correctly
identifies 78% of the false negatives from a
popular content filter. By exploiting the need
to source large quantities of spam on resource
constrained hosts and networks, SpamFlow is
not easily subvertible.

1 Introduction

By all estimates, unsolicited email (spam) is a press-
ing and continuing problem on the Internet. A consor-
tium of service providers reports that across more than
500M monitored mailboxes, 75% of all received mail is
spam, amounting to more than 390B spam messages
over a single quarter (Messaging Anti-Abuse Working
Group, 2007). Spam clogs mailboxes, slows servers
and lowers productivity. Not only is spam annoying,
it adversely affects the reliability and stability of the
global email system (Afergan & Beverly, 2005).

Popular methods for mitigating spam include content
analysis (Mason, 2002; Sahami et al., 1998), collabo-
rative filtering (SpamCop, 2007; Prakash, 2007), repu-

tation analysis (Spamhaus, 2007; SORBS, 2007), and
authentication schemes (Allman et al., 2007; Wong &
Schlitt, 2006). While effective, none of these methods
offer a panacea; spam is an arms race where spammers
quickly adapt to the latest prevention techniques.

We propose a fundamentally different approach to
identifying spam that is based on two observations.
First, spam’s low penetration rate requires spammers
to send extremely large volumes of mail to remain
commercially viable. Second, spammers increasingly
rely on zombie “botnets,” (Cooke et al., 2005) large
collections of compromised machines under common
control, as unwitting participants in sourcing spam
(IronPort, 2006). Botnet hosts are typically widely
distributed with low, asymmetric bandwidth connec-
tions to the Internet. Combining these observations
we make the following hypothesis: the network links
and hosts which source spam are constrained. We
ask whether the transport-level characteristics of email
flows provide sufficient statistical power to differenti-
ate spam from legitimate mail (ham).

In investigating this hypothesis, we gather a live data
set of email messages and their corresponding TCP
(Postel, 1981) packets. We extract and examine per-
email flow characteristics in detail. Based on the
statistical power of these flow features, we develop
“SpamFlow,” a spam classifier. In contrast to exist-
ing approaches, SpamFlow relies on neither content
nor reputation analysis; Figure 1 shows this relation.
Using machine learning feature selection, SpamFlow
identifies the most selective flow properties, thereby
allowing it to adapt to different users and network en-
vironments.

By examining email at the transport layer, we hope
to exploit a fundamental weakness in sourcing spam,
the requirement to send large quantities of mail on re-
source constrained links. As the volume of spam is
unlikely to abate, SpamFlow represents a new defense
against a significant source of unwanted mail. Our re-
search thus makes the following primary contributions:
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Figure 1: SpamFlow vs. existing schemes. SpamFlow
learns and classifies on the TCP packet stream.

1. Identification of TCP flow features that exhibit
significant probability differences between spam
and ham.

2. SpamFlow, a classifier to learn and leverage these
statistical differences for > 90% accuracy, preci-
sion and recall

3. Correct identification of 78% of the false negatives
generated by SpamAssassin (Mason, 2002).

Consequently, we hope this paper serves to identify
a new area of spam research and present a working
system which sources of spam cannot easily evade.

2 Experimental Methodology

The intuition behind our scheme is simple. Because
spammers must send large volumes of mail, they trans-
mit mail continuously, asynchronously and in paral-
lel. In addition, the sources of spam are frequently
large compromised “botnets,” which are resource con-
strained and typically connected to the Internet by
links with asymmetric bandwidths, e.g. aDSL and ca-
ble modems.

Therefore the flows that comprise spam TCP traffic
exhibit behavior consistent with traffic competing for
link access. Thus, there is reason to believe that a
spammer’s traffic is more likely to exhibit TCP time-
outs, retransmissions, resets and highly variable round
trip time (RTT) estimates.

Is it reasonable to believe that a spammer’s TCP/IP
traffic characteristics are sufficiently different than
traffic from Mail Transport Agents (MTAs) sending
legitimate mail? To systematically understand large-
scale behavior, we instrument an MTA to collect pas-
sive flow data for the email messages it receives.

TCP/IP MTA

Match Spam/Ham?

ServerMail

Mail

Mail

LabelsFlowsSMTP Packet
Capture

Dataset (X,Y)

Figure 2: Data collection: incoming SMTP packets
are captured and coalesced into flows. Each flow is
matched with a binary spam/ham ground-truth label.

2.1 Data Collection

Figure 2 depicts our collection methodology. Our
server has a dedicated, non-congested 100Mbps Eth-
ernet connection to the local network which is in turn
connected via multiple diverse Gigabit-speed links to
the Internet. The server processes SMTP (Klensin,
2001) sessions and writes emails to disk. In the header
of each email, the server adds the remote IP and TCP
port number of the remote MTA that sent the mail. Si-
multaneously the server passively captures and times-
tamps all SMTP packets. Each email is then manually
labeled as spam or ham to establish ground truth.

We coalesce the captured email packets into flows.
Let our server’s IP address be S. Define a flow
fIP :port as all TCP packets (IP :port) → (S:25) and
(S:25) → (IP :port)1. Using the IP and TCP port
number in the email headers, each email message is
unambiguously matched with its corresponding SMTP
flow. The port number is vital when receiving many,
potentially simultaneous, emails from the same source.

Over the course of one week in January, 2008, we col-
lect a total of 18,421 messages, 220 of which are legiti-
mate while the remaining 18,201 are spam (98.8%). Of
the ham messages, 39 are from unique mail domains.

2.2 Extracting Flow Features

We use the collected live data set to formalize a ma-
chine learning problem. Properties of each flow (fi)
provide the learning features (xi). Currently we ex-
tract the features in Table 1. While our flows are undi-
rected, particular features are directional, for instance
received and sent packet counts, RSTs, FINs and re-
transmissions. Including directional features, we con-
sider 13 features in total for each flow.

1Since our server’s IP and SMTP port are fixed (S:25),
these fields are not included in the flow tuple.



Table 1: Flow properties used as classification features

Feature Description

Pkts Packets
Rxmits Retransmissions
RSTs Packets with RST bit set
FINs Packets with FIN bit set
Cwnd0 Times zero window advertised
CwndMin Minimum window advertised
MaxIdle Maximum idle time between packets
RTT Initial round trip time estimate
JitterVar Variance of interpacket delay

Each fi corresponds to an email that is given a binary
yi ∈ {±1} label. Our data thus includes the input vec-
tor xi ∈ R

d, d = 13 for flow fi and label yi. From these
features, we wish to determine which provide the most
discriminative power in picking out spam and how the
number of training examples affects performance.

2.3 Transport Characteristics

In this subsection, we examine three of the flow proper-
ties in detail to illustrate the differences between spam
and ham transport characteristics. Figure 3 compares
the RTT, maximum idle time and FIN packet count
between ham and spam in the entire data set. Here we
define the RTT as the initial RTT estimate inferred by
the three-way TCP handshake. Figure 3(a) shows the
cumulative distribution of RTT times in our data. The
difference between spam and ham is evident. While
more than 20% of ham flows have an RTT less than
or equal to 10ms, almost no spam flows have such a
small initial RTT. The RTT of nearly all ham flows is
100ms or less. In contrast, 76% of spam flows have an
RTT greater than 100ms.

A feature such as RTT can be used to provide a classi-
fying discriminator, by taking the posterior probability
of a message being a spam, given that the RTT of the
message (rtt) is greater than r. Bayes’ rule provides
a convenient way to take the causal information and
form a diagnosis:

P (spam|rtt > r) =
P (rtt > r|spam)P (spam)

P (rtt > r)
(1)

Figure 3(b) shows the conditional probability of a
spam message across a continuous range of RTTs. We
include the probability of a ham message in the figure
as well; these probabilities sum to one, hence providing
mirror images of each other. With an RTT less than
10ms, the probability is strongly biased toward being

a ham message. In the range [0.02, 0.1]s, the probabil-
ity estimate is relatively neutral without a strong bias
toward either category. However, after 100ms, there
is a strong tendency toward the message being spam.
This conditional probability distribution corresponds
exactly to the data in Figure 3(a).

The differences in RTT raise several interesting points.
For some classes of users, it is not unexpected that le-
gitimate email originates from geographically nearby
sources. Thus, it is prudent in many cases to take ad-
vantage of locality of interest. RTT may be less of a
distinguishing characteristic though for users with fre-
quent trans-continental conversations. However, ap-
proximately 50% of the spam messages have an RTT
greater than 200ms, suggesting that the remote ma-
chines are quite remote, overloaded or reside on con-
strained links. Further, the ∼ 10% of flows with an
RTT greater than one second cannot easily be ex-
plained by geographic distance and are more likely ev-
idence of persistent congestion or end host behavior.
We emphasize that RTT is just one potential feature.
In instances where users receive legitimate email with
large RTTs, the system may use a threshold strategy
or simply lower the relative importance of RTT in fa-
vor of other flow features. Just as content filters are
frequently customized per-user, the distinguishing flow
characteristics can be unique to each user based on his
or her receiving patterns.

As a second feature, consider maximum idle, the max-
imum time interval between two successive packets
from the remote MTA. In some instances the maxi-
mum idle time directly reflects the initial RTT, but
is often different. Figure 3(c) depicts the cumulative
distribution of maximum idle times. Again, we see
marked differences between the character of spam and
ham flows. For instance, nearly 40% of spam flows
have a maximum idle time greater than one second,
events unlikely due to geographical locale. Figure 3(d)
shows the conditional probability that the message is
spam. After a maximum idle of 250ms, the proba-
bility tends strongly toward spam, as there are few
legitimate messages with such a long idle time.

Finally, to emphasize that there are many potential
features available in a flow (Table 1 enumerates fea-
tures examined in this work), we examine TCP FIN
segments. In a normal TCP session termination, each
endpoint issues a finish (FIN) packet to reliably end
the connection. Figure 3(e) shows that almost 45%
of the spam email flows do not send a FIN compared
to only 5% for ham. Finally, a small fraction of ham
flows result in two FINs whereas only 0.7% of spam
flows send more than one FIN. The resulting condi-
tional probabilities are given in Figure 3(f).
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(a) RTT Cumulative Probability Distribution
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(c) Maximum Idle Time Cumulative Probability Distri-
bution
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(d) Maximum Idle Time Conditional Probability
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(e) Received FIN Count Cumulative Probability Distri-
bution
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Figure 3: Comparing spam and ham probability distributions for RTT, idle time and received FIN count (left
column). The resulting conditional probability distributions (right column) serve as a discriminator.
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Figure 4: Non-features: distribution of received TCP
RST count is similar for spam and ham. Surprisingly,
this feature provides little discrimination.

2.4 Non-features

A strength of a statistical approach is in systemati-
cally identifying not only good features, but also poor
features. Several flow properties we initially expected
to be a strong indication of spam provide little differ-
entiation. For example, one might expect ill-behaved
flows to tear down the TCP connection using TCP
resets (RSTs) rather than a graceful shutdown with
FIN packets. However, as Figure 4 demonstrates, the
distribution of received RSTs is very similar between
spam and ham. Surprisingly, only 53% of ham flows
contain no reset packets while 28% contain two RSTs.

Manual investigation of the data reveals that many
MTAs, including Postfix and those of popular web mail
services such as Google and Yahoo, send RST pack-
ets after sending the SMTP quit command. Detailed
traces of this abortive close phenomenon are provided
in (Beverly & Sollins, 2008).

In all, the preceding analysis provides evidence that
spam and ham flows are sufficiently different to reli-
ably distinguish between them. The important point
of note is that we examine neither the content nor ori-
gins of incoming emails. Instead our determination of
an email’s legitimacy is based entirely upon the incom-
ing flow’s transport characteristics.

3 Results

Given our data set and problem formulation as de-
scribed in §2, we turn to exploiting the differences in
transport characteristics. In this Section we build and
train a supervised classifier and study its performance.

3.1 Building a Classifier

In this study, we use only the unique ham mails so
that our learning algorithm does not hone in on do-
main specific effects. For instance, if a majority of
email arrives from Yahoo and Google MTAs, the pri-
mary features may reflect specific properties of flows
from these servers. While nothing precludes learning
on the basis of multiple mail flows from a single do-
main, we seek to understand the generality of SMTP
flow characteristics. Our results will likely improve
given additional training data from the same domain
and MTAs.

As a result, our data set contains many more spam
messages than legitimate messages. To prevent a large
discrepancy in the complexion of training samples, we
limit our data set to include only five times as many
spam messages as valid messages. In each experi-
ment, we select a random set of spam messages that is
no more than five times larger than our ham corpus.
Thus, the experiments include 39 valid emails and 195
randomly selected spam emails (234 total labeled mes-
sages and corresponding SMTP packets).

In each experiment, we take n data point pairs (xi, yi)
from the feature extraction of §2. The n data points
are then randomly separated into a training and test
set. We horizontally concatenate the y labels and n
x d feature matrix X to form D = [yT : X]. To
ensure generality, we randomly permute rows of D for
each experiment and run each experiment ten times.
For a permuted D, the training data consists of the
first i rows of D while the test set is formed from the
remaining n − i. In this way the training and test
samples are different between experiments.

We use Support Vector Machines (SVMs) for classi-
fication (Vapnik, 1995) as maximum margin kernel
methods with regularization perform well in practice
on many tasks. However, we note that the general
insight behind SpamFlow is independent of the exact
learning algorithm.

3.2 Performance

Figure 5 shows the classification performance, mea-
sured in terms of accuracy, precision and recall as
a function of the training size. We achieve approx-
imately 90% accuracy using 60 training emails and
more than 80% accuracy with only 20. This accuracy
is relatively insensitive to the size of the data set, for
instance if we include only twice as many spam as valid
messages. However, the standard deviation is tighter
as the number of training emails increases.

Note that accuracy may be misleadingly high as the
true composition of our test set includes fives times
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Figure 5: Classification accuracy, precision and recall
vs. training size

as many spam messages as ham. A näıve classi-
fier need only guess “spam” to achieve high accu-
racy. Thus, we also include recall, or the true pos-
itive rate and precision measures. Recall is the ra-
tio of true positives to the number of actual positives,
recall = TP/(TP + FN) and is therefore a proxy for
the number of false negatives. Precision is most impor-
tant in this application where the majority of messages
are spam. Precision is the ratio of true positives to all
predicted positives, precision = TP/(TP + FP ), pro-
viding a metric of false positives. We see that at 40
training mails, the precision is more than 90%, corre-
sponding to an average of two false positives per iter-
ation.

Our results are from a fourth degree polynomial kernel
without any SVM tuning or care in the input feature
space. The current false positive rate is higher than is
ideal for our application. With further effort, we can
likely achieve higher performance. However, we envi-
sion SpamFlow as an additional metric in an overall
decision tree in just the same way modern filters use
multiple tests to form an overall spam decision.

3.3 Feature Selection

In order to optimize its performance to different
users and network environments, SpamFlow deter-
mines which features provide the most discrimination
power. To find these, we turn to feature selection
methods (Yang & Pedersen, 1997). Greedy forward
fitting (FF) requires computing a combinatorial num-
ber of possible feature combinations. However forward
fitting effectively eliminates features that themselves
are closely dependent. Often two features individually
provide significant power, but the second feature pro-
vides little additional classification power. For exam-
ple, the RTT and maximum idle time may be highly
correlated. Forward fitting will continually seek the
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θ1θ2

PREDICT

X
1

−1
10 0

1 1 1
0 01

1
...

...

−1

...

...

y

?

T
E

S
T

T
R

A
IN

x 31 2x xy xf

1

0

?
?
?

θi

Figure 6: Forward fitting finds a set of features |θ| < d
that provide the least training error. These features
are then used in test prediction.

next best performing feature without this potential de-
pendence.

Forward fitting feature selection simply finds, in suc-
cession, the next single feature j that minimizes an er-
ror function V (·). Therefore, training error decreases
monotonically with the number of features. Figure 6
provides the basic intuition behind feature selection.

Feature selection proceeds in rounds. In round i let Sj

be a d x i binary selection matrix with sj,i = 1 and
sk 6=j,i = 0. The i− 1 columns of Sj are set in previous
rounds. Recall that the data X is an n x d matrix
containing n emails with d features each. Let:

Zj = XSj (2)

Thus, Sj selects feature j in round i. Let D = {1 . . . d}
indicate the set of all possible features. We denote θi

as the set of best features in round i. Then, for a
prediction function f(·) and error function V (·), find:

argmax
j∈F−θi−1

V (f(Zj),Y) (3)

The feature that best minimizes the error in round i is
j, so we update the set of best features: θi = θi−1 + j.
Training error is typically an effective proxy for test
error. We use SVM training accuracy as the error
function although forward fitting can be used with any
model and error function.

Figure 7 shows the cumulative probability distribu-
tions of the selection order for each feature. We split
the results into two plots only to improve readabil-
ity. Figure 7(a) illustrates that both RTT and Cwnd-
Min are the most likely features to be selected first,
each with approximately 40% probability. Maxidle has
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Figure 7: Feature selection order probability distributions demonstrate the relative discriminatory strength of
different flow properties.

around a 10% chance of being the first selected feature
and the other features comprise the remaining 10%. In
other words, if the learner were given the choice of one
and only one feature with which to classify, the learner
would choose RTT or CwndMin. RecvRxmit and Sen-
tRxmit are typically not the first or second feature, but
frequently serve as the third and fourth best features.

Figure 7(b) gives the secondary features, those that
are more likely to be chosen fifth or later in the order.
These features include the RecvFIN, SentFIN, Cwnd0
and JitterVar.

To leverage the results of feature selection, we mea-
sure the prediction dependence on the number of best
features. Figure 8 gives the results of performing for-
ward fitting, mutual information and random features
in each round to select a given number of best features.
We include random features to provide a useful base-
line. As expected, the random features perform the
worst, yet still yield 60-70% accuracy. Forward fitting
achieves much higher accuracy, precision and recall,
but suffers from over-fitting as the number of features
is increased beyond five.

4 Related Work

Current best practices for defending against spam are
multi-pronged with four main techniques: content fil-
ters, collaborative filtering, reputation systems and au-
thentication schemes. The most successful attempts
thus far to combat spam have relied on fundamental
weaknesses in spam messages or their senders. We re-

view these systems as well as previous network and
traffic characterization studies.

Content Filtering: A wealth of content analysis sys-
tems are used to great effect today in filtering spam.
Learning methods have been effectively applied to
building classifiers that determine discriminatory word
features (Sahami et al., 1998). Such content analyzers
exploit the fact that a spam message contains statisti-
cally different words from a user’s normal mail. Even
innocuous looking commercial spam, intended to sub-
vert content filters, typically includes a link to an ad-
vertised service – thereby providing a basis for differ-
entiation. A popular open source solution is SpamAs-
sassin (Mason, 2002), although there are many com-
peting commercial alternatives. Our system, Spam-
Flow, does not perform any content analysis on the
messages themselves. By providing an alternative clas-
sification mechanism, SpamFlow helps address block-
ing innocuous junk mail, for instance that used to “de-
train” Bayesian filters (Vascellaro, 2006).

Collaborative Filtering: Spam is typically sent to
many users thereby providing a signature. By ag-
gregating the collective spam of a distributed set of
users, collaborative filtering (Prakash, 2007; Spam-
Cop, 2007) aims to prevent previously marked spam
messages from being accepted. For example, popu-
lar web mail clients can easily provide collaborative
filtering as their servers are under common adminis-
trative control and can leverage spam marked by one
user to block spam to other users. Unfortunately, not
all mail installations are large enough to take advan-
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Figure 8: Prediction performance relative to the number of features for Forward Fitting (FF), Mutual Information
(MI) and Random (RND) feature selection with an SVM model. The points represent average performance across
nodes in our data set, while the error bars show the standard deviation.

tage of collaborative filtering and are unwilling to rely
on vulnerable centralized repositories. Further, spam-
mers can trivially make each spam unique in an effort
to avoid collaborative techniques.

Reputation Systems: Reputation systems attempt
to aggregate historical knowledge over specific MTA
IP addresses or mail domains. For instance, a large
number of messages to unknown recipients might be
recognized as a dictionary attack. MTAs that contin-
ually send undeliverable mail are given a low reputa-
tion. Often, spam honeypots are used in conjunction
with reputation systems to gather additional data on
spam origination. MTAs which have previously sent
spam are likely to continue sending spam. Real-time
databases (Spamhaus, 2007; SORBS, 2007; Secure
Computing, 2007) of these offending MTAs and IP ad-
dresses provide blacklists which MTAs can query be-
fore accepting mail. However, Ramachandran’s anal-
ysis of DNS blacklists (Ramachandran et al., 2007)
shows that as much as 35% of spam is sent from IP
addresses not listed in common blacklists. Their work
brings to light an important point about the dynamism
of IP addresses in relation to spam. Not only are the
IP addresses of botnets changing as hosts acquire new
addresses, spammers are rapidly changing addresses in
order to evade blacklist reputation schemes. Spam-
Flow, however, has no dependence on IP addresses
making it particularly attractive in defending against
botnet spam.

Authentication Schemes: Authentication schemes
attempt to verify the sender or sender’s domain to pre-
vent spoofing-based attacks. Sender Policy Framework
(Wong & Schlitt, 2006) limits IP addresses to sourcing
mail only for authorized domains. Domain keys (All-
man et al., 2007) uses public keys to associate each
email with an entity.

Characterization Studies: Casado et al. perform
passive flow analysis on approximately 25,000 spam
messages to determine bottleneck bandwidths (Casado
et al., 2005). Their study finds significant modes at
modem, Ethernet and OC-12 speeds, suggesting that
spammers employ both farms of low-speed as well as
high speed servers. In contrast, we perform a detailed
passive flow analysis in order to find relevant features
for forming classification decisions.

Brodsky’s trinity system identifies botnets by count-
ing email volumes, thereby identifying spam without
content analysis. Similarly, the spamHINTS project
(Clayton, 2006) leverages the sending patterns of
spammers to identify the sources of spam. In addi-
tion to analyzing server logs, spamHINTS proposes to
examine sampled flow data from a network exchange
point to obtain a large cross section of email traffic
patterns and volumes. For instance, hosts that source
email continually or have particular patterns can be
identified through a set of heuristics. In contrast, our
work analyzes the individual packets of SMTP transac-
tions to obtain much more detailed flow information,
e.g. congestion windows and round trip times. Fur-
ther, SpamFlow relies on machine learning techniques
rather than heuristics to build a classification system.

Our work is in a similar spirit to (Ramachandran &
Feamster, 2006) which attempts to characterize the
network properties of spammers, for instance the IP
blocks to which they belong. Instead, by taking a step
down the protocol stack and examining the transport
level properties of spam, we hope to take advantage of
previously unexploited information.



5 Conclusions and Future Work

Our results are promising, demonstrating that even
rough metrics of a flow’s character can aid in differen-
tiating incoming emails. By providing a method that
does not rely on either content or reputation analy-
sis, SpamFlow is a potentially useful tool in mitigat-
ing spam. Whereas reputation systems are vulnerable
to IP address dynamics, SpamFlow has no reliance on
addresses. While content analysis is easy to game,
SpamFlow attempts to exploit the fundamental char-
acter of spam traffic. We plan to gather a significantly
larger data set that includes more valid messages and
additional features.

Can spammers adapt and avoid a transport-based clas-
sification scheme? By utilizing one of the fundamental
weaknesses of spammers, their need to send large vol-
umes of spam on bandwidth constrained links, we be-
lieve SpamFlow is difficult for spammers to evade. A
spammer might send spam at a lower rate or upgrade
their infrastructure in order to remove any congestion
effects from appearing in their flows. However, either
strategy is likely to impose monetary and time costs
on the spammer.

The initial RTT is the strongest indication of spam for
our data set. A spammer might attempt to artificially
lower the inferred RTT by optimistically acknowledg-
ing packets that have not yet been received. However,
an adversary cannot reliably know the remote host’s
initial sequence number for the TCP connection and
therefore cannot easily fake the initial RTT. Such at-
tempts to hack TCP to disguise the effects we observe
are likely to expose other features, for instance retrans-
mits and duplicate packets.

While RTT is the strongest discriminator on our data,
other mail users may have different email interactions
with geographically dispersed MTAs. Further, the ob-
served spam RTT may vary for MTAs in countries
other than ours. However, such differences demon-
strate the strength of a statistical approach. Just as
content based filtering is personalized for individual
users, the particular features for transport based fil-
tering can be tailored to the end recipients.

Because SpamFlow performs neither content nor rep-
utation analysis, its functionality could be pushed
deeper into the core of the network without compro-
mising privacy concerns. SpamFlow is unique in this
regard. In addition, with a wider cross-sectional view
the performance of SpamFlow would likely improve.

Utilizing available flow information may aid not only in
preventing spam, but also other types of attacks that
originate from botnets and compromised machines.
For instance, denial of service attacks similarly rely

on sending large quantities of data over constrained
links. We wish to gather data to better understand
the broader applicability of our approach.

Our hope is that this work serves as a step forward
in providing a means to combat spam and impose a
greater cost on parties sourcing spam.
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